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Abstract
The critical behaviors of the mutual information in the one-dimensional spin-
1 bilinear biquadratic model are studied. It is found that all the quantum
phase transition points including the order–disorder ones and the infinite-
order ones in the system can be quantified from the singularity analysis of the
mutual information of two sites with the longest distance, because the mutual
information captures the correlation properties about the critical fluctuations.
More interestingly, the special structure of the wavefunction and the special
symmetric property of the system can be indicated by the entropy correlation
behaviors. The finite size scaling laws of the mutual information and its
derivative are also studied.

PACS numbers: 03.67.Mn, 05.70.Fh, 05.70.Jk

1. Introduction

Many interesting phenomena in many-body systems are caused by correlations. The ground
state of a system may favor different quantum states with the changing of model parameters.
These quantum states compete with each other and the phase transition happens at the
critical point. The order parameter is used to characterize the quantum phase transition.
The quantum phase transition is a very important issue in modern condensed matter physics
[1]. Due to the correlations, the subsystems are entangled. The quantum entanglement is
a very interesting topic in the quantum information and quantum computation sciences [2].
Several measurements of entanglement are proposed to quantify the correlations such as von
Neumann entropy, concurrence [3, 4], entanglement of formation [3, 4], negativity [5–7],
tangle [8, 9] and block entanglement [10, 11]. Recently, it has been found that the quantum
phase transition point can be detected by the singularity of measurement of entanglement
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[12–22]. This fact can be understood as follows. The order parameter is heavily dependent
on the correlation functions, which may show some singular behaviors at the critical point
because the wavefunction of the system is singular at the phase transition point. Some
necessary information about the critical fluctuations in the correlation functions is kept in the
local reduced density matrix because the elements of the reduced density matrix are determined
by the correlation functions. As a result, the measurement of entanglement calculated from the
reduced density matrix may show some singular behaviors at the critical point. Therefore, the
singular point of the measurement of entanglement or its derivative can give some information
about the phase transition point. If the minimum, maximum or discontinuous point of the
measurement of entanglement or its derivative is the singular point, it may correspond to a
phase transition point. While if the minimum, maximum or discontinuous point is not the
singular point, it does not correspond to a phase transition point. According to Landau’s phase
transition theory, if the measurement of entanglement itself has a singularity, the singular point
corresponds to a critical point of the first-order phase transition. If the first-order derivative
of the measurement of entanglement has a singularity, the singular point corresponds to a
second-order phase transition point. The fidelity susceptibility is also a interesting quantity
[23, 24]. It comes from the overlap between the original state and final state after some
evolutions. It is found that the fidelity susceptibility can be used to determine the quantum
phase transitions point [25–29].

The strongly correlated systems with a high intrinsic degree of freedom have many
applications. Many new quantum states and novel phenomena appear in the high-spin systems.
The phase diagrams of this kind of systems are rather rich because every site can contain
more information. The study of entanglement quantifying in the high-spin systems is quite
complicated. One reason is that some definitions of measurements of entanglement are valid
only for the 2 × 2 that is two qubits systems such as the concurrence. Moreover, some local
measurements are failed to quantify the phase transition for this includes the long range or
global correlations.

Based on the above considerations, we study the long range correlation behaviors from
the view of entropy in the one-dimensional spin-1 bilinear biquadratic model. This system is
very interesting for it has both the order–disorder phase transitions and the infinite order ones.
We calculate the mutual information of two sites with the longest distance in the system. We
find that all the quantum phase transition points can be quantified accurately by the mutual
information with the longest distances from the numerical exact diagonalization and the finite
size scaling analysis. More interesting, we also find that the mutual information can give the
information about the SU(3) integrable point and the valence bond solid (VBS) state. Our
results agree with the previous results [30–35]. This method is simple and can be applied to
other models.

The paper is organized as follows. In section 2, we introduce the one-dimensional spin-1
bilinear biquadratic model and its phase diagram. We derive the analytic expression for the
correlation entropy in section 3 and study it by the numerical exact diagonalization method in
section 4. Section 5 is the summary.

2. The model

The Hamiltonian of the one-dimensional spin-1 bilinear biquadratic model reads

H =
N∑

j=1

[cos θ Sj · Sj+1 + sin θ(Sj · Sj+1)
2], (1)
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where Sj is the spin-1 operator at the site j,N is the total number of the sites and θ is
the coupling parameter. In the following, we use the periodic boundary condition. It is
well known that the ground-state phase diagram of the system (1) can be divided into four
regions.

(i) If −0.25π < θ < 0.25π , the system favors the Haldane phase. In this region, the system
has a unique disordered ground state, the correlation functions exponentially decay, and
the elementary excitation has a gap. The eigenstate of the system is the VBS state at
the point of θV BS = 0.1024π [36, 37]. The system has a continuous transition from the
Haldane gapped phase to the gapless trimerized phase at the Lai–Sutherland critical point
θc1 = 0.25π . This is a infinite order phase transition, which belongs to the Kosterlitz–
Thouless-type transition [38, 39]. At the critical point θc1, the system has the SU(3)
symmetry and can be solved exactly by the Bethe ansatz method [40–42].

(ii) If 0.25π < θ < 0.5π , the system favors the trimerized phase. In this region, the
elementary excitation is gapless. At the critical point θc2 = 0.5π , the ground state of
the system has a transition from the trimerized phase to the ferromagnetic phase. It is a
first-order phase transition.

(iii) If 0.5π < θ < 1.25π , the ground state of the system is an ordered ferromagnetic state
and the elementary excitation is gapless.

(iv) If 1.25π < θ < 1.75π , the system is in the dimerized phase region. The ground state is
a singlet state with two-fold degeneracy due to the Z2 symmetry. The order parameter
is the dimer–dimer correlation function. At the critical point of θc3 = 1.25π , the system
has a transition from the gapless ferromagnetic state to the gapped dimerized state, which
is a first-order phase transition. In the region of θ slightly larger than 1.25π , some
authors predict that the system has a nondimerized nematic phase [43], while other
authors argue that the nematic phase does not exist [34]. At the point of θbk = 1.5π , the
system can be solved exactly by the Bethe ansatz method [44, 45]. At the critical point
θc4 = 1.75π , the system has a transition from the dimerized phase to the Haldane phase.
It is a second-order phase transition. The system (1) is also integrable at the critical point
θc4 [46, 47].

3. Correlation entropy

The correlation function is a fundamental tool to quantify the correlation effects. It has
many applications in condensed matter physics. The correlation function has a counterpart
quantity in the quantum information theory. That is the mutual information or the correlation
entropy, which measures the correlation effects from the view of entropy. The definition of
the correlation entropy is [48–51]

S(A : B) = S(A) + S(B) − S(AB), (2)

where A and B are two interacting subsystems in the real physical system, S(p) =
−tr(ρp log2 ρp) is the partial entropy of the subsystem p = A,B and AB, the ρp = trp̄ρ is
the reduced density matrix of subsystem p, trp̄ stands for tracing over all except the selected
subsystem p and ρ is the density matrix of the system. The correlation entropy measures the
total correlation between two subsystems A and B. At the critical point, the entropy correlation
length tends to infinity and the correlation entropy is an exponential decay. Far away from
the critical point, the entropy correlation length is finite and the correlation entropy decays as
a power-law. The correlation entropy captures the key feature of the correlation information
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about critical fluctuations and can be used to quantify the critical phenomena in both the
quantum and the classical systems.

The previous studies show that some measurements of entanglement such as von Neumann
entropy of two sites with nearest neighbor, entanglement of formation and concurrence cannot
give all the phase transition points of the system. In this paper, we consider the global
correlation effects and study the correlation entropy between two sites with the longest distance.
From the analysis of symmetry of the system (1), we obtain the reduced density matrix of two
sites l and j as [52]

ρlj = α0 + α1Sl · Sj + α2(Sl · Sj )
2, (3)

where the coefficients are determined by the correlation functions as

α0 = 1 − 2
〈(
Sz

l S
z
j

)2〉
,

α1 = 1
4

〈(
Sz

l S
z
j

)2〉
+ 1

4

〈
Sz

l S
z
j

〉 − 2
3 , (4)

α2 = 3
2

〈
Sz

l S
z
j

〉 − 2
3 .

The system (1) is an isotropic model and has the rotational invariant, thus the correlation
functions along the x, y and z directions are equal,

〈
Sx

l Sx
j

〉 = 〈
S

y

l S
y

j

〉 = 〈
Sz

l S
z
j

〉
. The correlation

functions between different directions are zero. The reduced density matrix (3) can be
diagonalized analytically. From this, we obtain the partial entropy of two sites l and j as
S(lj) = −∑9

n=1 λn log2 λn, where λn are the eigenvalues of the reduced density matrix (3).
Taking the partial trace of the density matrix (3), we obtain the single-site reduced density
matrix. From this, we obtain the von Neumann entropy of a single site as log23. Then the
correlation entropy between two sites l and j reads

S(l : j) = 2 log2 3 +
9∑

n=1

λn log2 λn, (5)

where

λ1 = λ2 = λ3 = λ4 = α0 + α1 + α2, λ5 = λ6 = α0 − α1 + α2,

λ7 = 3
√

δ1 + 3
√

δ2 − b

3
, λ8 = ω

3
√

δ1 + ω2 3
√

δ2 − b

3
,

λ9 = ω2 3
√

δ1 + ω
3
√

δ2 − b

3
, ω = 1

2
(−1 + i

√
3),

δ1 = −q

2
+

√
q2

4
+

p3

27
, δ2 = −q

2
−

√
q2

4
+

p3

27
,

p = −b2

3
+ c, q = 2b3

27
− bc

3
+ d, b = −3α0 + 2α1 − 6α2,

c = 3α2
0 − α2

1 + 9α2
2 + 12α0α2 − 4α0α1 − 4α1α2,

d = (α0 − α1 + α2)
(
2α2

1 − α2
0 − 4α2

2 − 5α0α2 + α0α1 − 2α1α2
)
.

(6)

Equation (5) gives a relation between the correlation entropy and the correlation functions.
According to the coupled angular momentum theory, the reduced density matrix (3) can

also be written as [52]

ρlj = G|0, 0〉〈0, 0| +
F

3

1∑
Sz

t =−1

∣∣1, Sz
t

〉〈
1, Sz

t

∣∣ +
1 − G − F

5

2∑
Sz

t =−2

∣∣2, Sz
t

〉〈
2, Sz

t

∣∣, (7)
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where Sz
t is the total spin along the z direction of the two spins, and the coefficients G and F

are defined by

G = 1
3 [〈(Sl · Sj )

2〉 − 1], F = 1 − 1
2 [〈Sl · Sj 〉 + 〈(Sl · Sj )

2〉]. (8)

Under the coupled basis, the reduced density matrix (7) is diagonalized naturally. The results
obtained from equations (3) and (7) are the same.

Compared with the correlation functions, the correlation entropy has many advantages.
From equation (5), we see that the correlation entropy is a reasonable combination of
the correlation functions. Meanwhile, both the correlation function and its square have
contributions to the correlation entropy. Then the correlation entropy includes some
information related to the critical fluctuations. Generally speaking, if we consider an
anisotropic system, the correlation functions along the x, y and z directions are not equal.
In this case, the correlation functions along one direction cannot supply all the necessary
critical information and the correlation functions along other directions should be considered.
The order parameter may be difficult to construct because it is hard to integrate these correlation
effects. More detailed calculations show that the correlation entropy includes all kinds
of correlation functions, i.e. that along the same directions and that between two different
directions. The correlation effects are combined naturally in the correlation entropy.

The correlation entropy shows different behaviors from that of the correlation functions.
The correlation entropy has its own finite size scaling law and critical exponents. The
correlation entropy enters the scaling regions before the correlation functions [9]. That is to
say for some small system sizes, the correlation entropy has the finite size scaling behaviors
while the correlation functions do not.

When treating the phase transition by using the correlation entropy method, we do not need
a pre-assumed order parameter for the correlation entropy characterizes the total correlation
effects. Let us focus on the system (1) and give an example. The order parameter quantifying
the phase transition at the critical point θc1 is [53]

g(l) ≡
〈
Sz

0

⎛
⎝ l−1∏

j=1

eiπSz
j

⎞
⎠ Sz

l

〉
. (9)

From equation (9), we see that the order parameter is non-local and we must calculate the
correlation functions with different distances to obtain the global information of the critical
phenomena. The order parameter of the trimer phase in the system (1) is o ≡ 〈

Sz
j−1S

z
jS

z
j+1

〉
.

Then we should calculate the three-body correlation functions to determine the order parameter
and the critical point. Thus quantifying the phase transition points by the correlation functions
is not much effective. If we use the correlation entropy method, we do not need the explicit
form of the order parameter and the phase transition point can be determined directly. Please
see the next section for this point.

The correlation entropy method is valid for both the quantum and the finite-temperature
phase transitions. It is also valid for the order–disorder phase transitions and the infinite order
ones.

4. The results

System (1) does not have the exact solutions except for several special values of the model
parameter θ . We use the numerical exact diagonalization method to calculate the correlation
entropy of the system. The numerical results of the system with finite system size should be
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Figure 1. The curves of the correlation entropy S(0 : N/2) versus the coupling parameter θ with
the system size N = 6, 12. We see that the curve has five singular points, θV BS = 0.1024π, θc1 =
0.25π, θc2 = 0.5π, θc3 = 1.25π and θc4 = 1.75π . The θV BS corresponds to the valence bond
solid state, and θc1, θc2, θc3 and θc4 correspond to the phase transition points. At the VBS point,
the correlation entropy is zero. The correlation entropy arrives at the minimum exactly at the
critical point θc1 for any system size. The correlation entropy is discontinuous at the critical points
θc2 and θc3, which means that they are two first-order phase transition points. The first-order
derivative of the correlation entropy is divergent at the critical point θc4, which corresponds to a
second-order phase transition point. The valley near 1.5π and the peak near 1.9π are the results
that the derivative of correlation entropy has a singularity at the critical point 1.75π .

generalized to that with infinite system size because the quantum phase transition happens
in a infinity system at the zero temperature. Therefore, the finite size scaling analysis is
necessary.

In order to see the entropy correlation behaviors more clearly, we consider the correlation
entropy between two sites with the longest distance. That is to say if the system size is N,
we calculate the correlation entropy between two sites with the distance N/2. Because every
site has three spin states, |+〉, |0〉 and |−〉, the Hilbert space of the system (1) is 3N . The
ground-state properties can be obtained by diagonalizing Hamiltonian (1) in some invariance
subspaces so that the system size could be larger. After some algebra, we obtain the curve
of the correlation entropy S(0 : N/2) versus the coupling parameter θ , which is shown in
figure 1. Figure 1 only gives the results for the system sizes N = 6 and 12. For other system
sizes, we exactly diagonalize Hamiltonian (1) in different invariance subspaces for different
coupling regions. For example, in the region of 0 � θ � 0.5π , we calculate the correlation
entropy with the system size N = 6, 9, 12, while in the region of 1.25π � θ � 2π , we
calculate the correlation entropy with the system size N = 4, 6, 8, 10, 12, 14.

The correlation functions and their square terms versus the coupling parameter θ are
shown in figure 2. From it, we see that the correlation functions are discontinuous at the
critical points θc2 = 0.5π and θc3 = 1.25π , which means that they are two first-order phase
transition points. The correlation functions do not show any singular behaviors at the critical
points θc1 = 0.25π and θc4 = 1.75π .

We explain the inflexions of the correlation entropy S(0 : N/2) one by one. From figure 1,
we see that the first inflexion of the curve appears near the point 0.12π . By carefully checking
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(a)

(b)

Figure 2. The curves of the correlation functions and their square terms versus the coupling
parameter θ with the system size (a) N = 6 and (b) N = 12. The correlation functions do not
show any singular behavior at the critical points θc1 = 0.25π and θc4 = 1.75π .

the numerical data, we find that the value of correlation entropy S(0 : N/2) at this inflexion is
zero, which means the subsystems with the longest distance are separable, ρ0N/2 = ρ0 ⊗ρN/2.
This point indicates the valence bond solid state of the system. Furthermore, for any values
of the system size N, we can always find a coupling θV BSm at which the correlation entropy
between two sites with longest distance is zero. The coupling θV BSm depends on the system
sizes. For different system sizes, the coupling θV BSm are different. Then we should consider
the finite size scaling behaviors of the coupling θV BSm. The curve of the coupling θV BSm versus
the system size scale N−3 is plotted in figure 3, where the system size N = 6, 8, 10, 12, 14.
We see that the data for the θV BSm with different system sizes fall on a straight line. The fitting
gives θV BSm/π = 0.104 43 + 4.439 26N−3. If the system size tends to infinity, the coupling
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Figure 3. The finite size scaling behaviors of the coupling θV BSm with the system size scale N−3.
The data are fitted with a straight line as θV BSm/π = A + BN−3, where A = 0.104 43 ± 0.000 07
and B = 4.439 26 ± 0.028 50. When the system size tends to infinity, the coupling θV BSm takes
the value of 0.104 43π ± 0.000 07π , which is close to the actual value 0.1024π .

θV BSm tends to 0.104 43π ±0.000 07π , which is very close to the actual value 0.1024π . Then
we arrive at a very interesting issue that the correlation entropy can be utilized not only to
determine the critical point but also to find the special structure of the wavefunction of the
system.

From figure 1, we find that the correlation entropy S(0 : N/2) takes the minimum exactly
at the point of θc1 = 0.25π for the system size N = 6, 12. It is also true for the case of N = 9.
Therefore, the critical point θc1 does not depend on the system size. Further study shows that
the system (1) has the SU(3) symmetry at this point. Then Hamiltonian (1) is equivalent to
a SU(3) permutation operator plus a constant. Therefore, the correlation entropy can also
indicate the special symmetry point of the system.

From figure 1, the curve of correlation entropy is discontinuous at the points of θc2 = 0.5π

and θc3 = 1.25π . These critical points correspond to the first-order phase transitions in the
system (1).

We focus the region of 1.25π < θ < 2π in figure 1. The correlation entropy S(0 : N/2)

is a concave function near the coupling 1.6π , while it is a convex function near the coupling
1.8π . Then the derivative of correlation entropy S ′

θ (0 : N/2) must have a maximum at certain
θm, which gives us a hint to determine the second-order phase transition point. Please note
that the correlation entropy S(0 : N/2) must have one minimum and one maximum to show
the concave and convex behaviors, thus the valley near the coupling 1.5π and the peak near
the coupling 1.9π are trivial and do not mean anything. We find that the maximum of the
derivative of the correlation entropy S ′

θm
(0 : N/2) and θm are oscillated with the increasing

system size N, please see figure 4. This is because the correlation function with the longest
distance N/2 has a factor (−1)N/2. Then the correlation entropy and its derivative calculated
from the correlation functions are also oscillated with the increasing system size. The
oscillation effects can be erased by considering the cases of odd N/2 and even N/2 respectively
and the results must be the same. Without losing generality, we consider the case that N/2 is
odd. The θm versus the system size N = 6, 10, 14 is shown in figure 5. The linear fitting gives
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Figure 4. The finite size scaling behaviors of the coupling θm, at which the derivative of the
correlation entropy S′

θm
(0 : N/2) arrives at its maximum. The coupling θm are oscillated with the

increasing system size N. This is because the correlation functions with the longest distance have
a factor (−1)N/2, then the correlation entropy and its inflexions calculated from the correlation
functions have an oscillation. The oscillation effects can be erased by treating the odd N/2 and
even N/2 respectively and the results are the same.

Figure 5. The finite size scaling behaviors of the coupling θm with the system size N = 6,

10, 14. The linear fitting gives θm/π = A + BN−1, where A = 1.761 05 ± 0.001 51 and B =
0.286 43 ± 0.012 66. When the system size tends to infinity, θm takes the value of 0.176π ±
0.001 51π , which is reasonably close to the actual value 0.175π .

θm/π = 1.761 05+0.286 43N−1. When the system size tends to infinity, the θm takes the value
of 0.176π ± 0.001 51π , which is reasonably close to the actual critical value θc4 = 0.175π .
The curve of the maximum of the derivative of correlation entropy S ′

θm
(0 : N/2) versus system

9
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Figure 6. The curve of the maximum of the derivative of correlation entropy S′
θm

(0 : N/2)

versus the system size N = 6, 10, 14. The linear fitting gives S′
θm

(0 : N/2) = A − BN , where
A = 0.814 52 ± 0.000 26 and B = 0.022 95 ± 0.000 25, which means the maximum of the
derivative of correlation entropy is divergent when the system size N tends to infinity.

Figure 7. The finite size scaling behaviors of the maximum of the derivative of correlation entropy
S′

θm
(0 : N/2).

size N is shown in figure 6. The linear fitting gives S ′
θm

(0 : N/2) = 0.814 52 − 0.022 95N .
Thus the maximum of the derivative of correlation entropy is divergent when the system
size tends to infinity. The finite size scaling behaviors of the maximum of the derivative of
correlation entropy are shown in figure 7. We see that all the data for N = 6, 10, 14 fall on a
single line. The phase transition at the coupling θc4 = 1.75π is the second-order one because
the above analysis is based on the first-order derivative of correlation entropy.

10
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5. Conclusion

In conclusion, we study the long-range entropy correlation effects and quantum phase
transitions in the one-dimensional spin-1 bilinear biquadratic model. From the singular
analysis and finite size scaling behaviors of the correlation entropy or its derivative, we find
that all the critical points in the system (1) can be determined by the correlation entropy.
We also find that the correlation entropy can indicate the valence-bond solid state and the
integrable SU(3) symmetric property of the system.
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